Superfluid Helium

              A current line of research is experimental and theoretical investigations
              into the superfluid phase transition of liquid helium.  When cooled to temperatures
              below 2.17 Kelvin (-460 F), liquid helium loses all viscosity and can move
              without friction, known as the superfluid state.  The results in our lab indicate
              that the mechanism underlying this phase transition is quantized vorticity.  At
              low temperatures there is not enough energy in the liquid to excite any vortex
              lines, and the helium can flow freely.  As the temperature is raised, however,
              vortex loops (similar to smoke rings in air) begin to be thermally created, and
              they oppose the flow of the liquid.  Finally at temperatures above 2.17 K (called
              the l-point) the liquid becomes filled with a tangle of vorticity, bringing the
              frictionless flow of the helium to a halt, turning it back into a normal liquid.

                                      Ducks in a classical vortex

Selected recent publications:

 G.A. Williams,   Vortices and Superfluidity,         <-- (for non-specialists)
                             Endeavour 16, 101 (1992).
(View JPEG images of this paper: Page 1 , Page 2 , Page 3 , Page 4 , Page 5 , Page 6 , Page 7 , Page 8)

 G.A. Williams,   Vortex Rings and the Superfluid l-Transition,
                             J. Low Temp. Phys. 89
, 91 (1992).

 G.A. Williams,   Vortex Dynamics and Superfluid Relaxation Near the 4He l-Transition,
                             Phys. Rev. Lett. 71, 392 (1993).

 G. A. Williams,   Vortex Dynamics at the Superfluid l-Transition,
                             J. Low Temp. Phys.  93
, 1079 (1993).

 H. Cho and G. A. Williams,   Vortex Core Size in Submonolayer Superfluid 4He Films,
                              Phys. Rev. Lett. 75
, 1562 (1995).    Download the PDF file (103 Kb)

 G. A. Williams,   Specific Heat and Superfluid Density of Bulk and Confined 4He Near the l-Transition,
                              J. Low Temp. Phys. 101
, 415 (1995).

 G. A. Williams,   Dimensionality Crossover of the 4He Superfluid Transition in a Slab Geometry,
                              J. Low Temp. Phys. 101
, 463 (1995).

 H. Cho and G. A. Williams,   Superfluid Phase Transition of 3He-4He Mixture Films Adsorbed on Alumina Powder ,
                               J. Low Temp. Phys. 110
, 533 (1998).    Download the PDF file (190 Kb)

 G. A. Williams,  Vortex Loop Phase Transitions in Liquid Helium, Cosmic Strings,and High-T_c Superconductors, 
                               Phys. Rev. Lett. 82
, 1201 (1998).    Download the PDF file (130 Kb)

 Web Powerpoint slides comparing superfluid transitions in porous materials: Bose condensation or broadened Kosterlitz-Thouless ?                                                        

[ Back to Home Page ]