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Vortex-Loop Phase Transitions in Liquid Helium, Cosmic Strings,
and High-Tc Superconductors
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The distribution of thermally excited vortex loops near a superfluid phase transition is calcula
from a renormalized theory. The number density of loops with a given perimeter is found to cha
from an exponential decay with increasing perimeter to an algebraic decay asTc is approached, in
agreement with recent simulations of both cosmic strings and high-Tc superconductors. Predictions
of the value of the exponent of the algebraic decay atTc and of the critical behavior in the vortex
density are confirmed by the simulations, giving strong support to the vortex-folding model propo
by Shenoy. [S0031-9007(99)08401-X]

PACS numbers: 64.60.Cn, 11.27.+d, 67.40.Vs, 74.20.–z
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The role of thermally excited vortex loops in three
dimensional phase transitions, where a U(1) symmetry
broken, has recently become a prime topic in cosmolo
[1,2] and high-Tc superconductivity [3–5]. These transi
tions are in the same universality class as the superfluidl

transition in4He. In the helium case our original renor
malization theory based on vortex loops [6,7] has be
extended to calculations of the specific heat [8] and to t
dynamics of the transition [9]. In this theory the Landau
Ginzburg-Wilson Hamiltonian is rewritten to cast it in
terms of its elementary excitations, spin waves and vort
loops, providing an alternative method for carrying ou
the renormalization process, compared to the more tra
tional perturbation theories which expand the Hamiltonia
expressed in terms of the order parameter.

Here we further employ the loop theory to gain insigh
into recent simulations of the high-Tc transition [4,5] and
of cosmic-string phase transitions in the early univer
[1,2]. The probability of occurrence of a vortex loop with
perimeterP is calculated and, in agreement with the simu
lations, we find a crossover from quasiexponential dec
of the probability with the perimeter at low temperature
to purely algebraic decay precisely atTc. This provides
strong support for the phenomenological “Flory-scaling
treatment of the random-walking loops developed b
Shenoy and co-workers [10].

In the vortex-loop theory the superfluid densityrs

is reduced by thermally excited loops whose avera
diameter a increases as the temperature is increas
and the density is finally driven to zero atTc by loops
of infinite size [6]. Defining a dimensionless superflui
density byKr ­ h̄2rsa0ym2kBT , where m is the mass of
the 4He atom anda0 is the smallest ring diameter, the
equation for the renormalized density is given by [8]

1
Kr

­
1

K0
1 A0

Z a

a0

µ
a
a0

∂6

exp

µ
2

Usad
kBT

∂
da
a0

. (1)

Here A0 ­ 4p3y3, K0 is the “bare” superfluid density
resulting from the spin waves (and is the initial value o
Kr ), andUsad is the renormalized energy of a ring, give
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UsadykBT ­ p2
Z a

a0

Kr

∑
ln

µ
a
ac

∂
1 1

∏
da
a0

1 p2K0C ,

(2)

whereC is a nonuniversal constant characterizing the co
energy. For heliumC and a0 are determined from two
experimental inputs,Tc ­ 2.172 K and the amplitude of
the superfluid density [8], yieldingC ­ 1.03 and a0 ­
2.5 Å. The effective core sizeac in Eq. (2) was suggested
by Shenoy and co-workers [7,10] to be a result of the ra
dom walk of the loop giving rise to radial fluctuations o
orderac about the average diameter. This folding of th
loop occurs because antiparallel vortex segments low
the energy. A simple polymer-type calculation [10] us
ing energy-entropy arguments yieldsacya ­ sKraya0du ,
where u ­ dysd 1 2d ­ 0.6 in d ­ 3 dimensions has
the same form as the well-known Flory exponent of th
self-avoiding walk.

Equations (1) and (2) then constitute a coupled set
integral equations for the renormalized superfluid densi
and can be solved recursively starting from the bare sc
a0 and iterating to distances greater than the correlati
lengthj ­ a0yKr . In practice these are converted to a s
of coupled differential equations similar to the Kosterlit
recursion relations [11] for the two-dimensional case, a
are solved using a Runge-Kutta technique [9]. AsT is
increased (K0 decreased) the solution forrs falls to zero
as sTc 2 T dn, with n ­ 0.6717 for u ­ 0.6. This can
be better matched to the most precise experimental va
[12] n ­ 0.6705 by adjusting tou ­ 0.594, which is
reasonable since it is known that the Flory-type argume
are not exact in three dimensions [13].

The arguments of Ref. [10] also yield a result for th
average perimeter of a loop of diametera,

P
a0

­ B
≥ a

a0

¥1yd

, (3)

where B is a constant and the exponentd ­ 2ysd 1 2d ­
0.4. This form for the perimeter was at least partiall
© 1999 The American Physical Society 1201
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verified in the computer simulations of Ref. [10], an
in the XY model simulations of Epiney [14]. ForPya0
greater than about 20 the Epiney data for the average lo
size versus average perimeter can be fit by Eq. (3) w
B ­ 1.8, although the resolution is poor because of scat
in the data resulting from the relatively small lattices163d
that was simulated.

The distribution of the density of loops with a given
perimeterP can be obtained from the theory outline
above, which is of interest because these distributio
have now been measured in the cosmic string [2] a
high-Tc [4,5] simulations. The probability per unit vol-
ume for finding a loop of mean diameter betweena and
a 1 da is

p

2a3
0

≥ a
a0

¥2
exp

≥
2

Usad
kBT

¥ da
a0

. (4)

Equating this to the probabilityDsPddPya0 of finding the
corresponding loop of perimeter betweenP andP 1 dP
gives the probability distribution

DsPd ­
p

2a3
0

d

B

µ
a
a0

∂s3d21dyd

exp

µ
2

Usad
kBT

∂
. (5)

For temperatures well belowTc, Usad , a ln a, and
henceDsPd decreases exponentially withPd. Near Tc,
however, the behavior is quite different. By differenti
ating Eq. (1) with respect toa and substituting for the
exponential term in Eq. (5) we get

DsPd ­
p

2a3
0

d

B

µ
a
a0

∂2s3d11dydµ
≠s1yKr d

≠a

∂
. (6)

Precisely atTc , Kr from Eq. (1) satisfies the condition
Kraya0 ­ D0 ­ 0.39, at least for values ofa greater
than about5a0, and whereD0 is a universal constant
[8,15]. This condition is the three-dimensional equivale
of the univeral “jump” of the superfluid density in two
dimensions [11]. Inserting this result into Eq. (6) an
employing Eq. (3) yields the prediction that atTc the loop
distribution will cross over from exponential to algebrai
decay withP,

DsPd ­
pdB3d

2a3
0A0D0

µ
P
a0

∂2g

, (7)

where the exponentg ­ 3d 1 1. For the “Flory” value
d ­ 0.4 this would predictg ­ 2.2. This form forDsPd
signals the onset of loops of infinite size, since they n
longer have a vanishing probability. It should be note
that the algebraic decay is a consequence of the stro
renormalization atTc, where the screening of large loop
by smaller ones causes the variation ofUsad to change
[9] from ,a ln a to lna at Tc, causing the change from
Eq. (5) to Eq. (7).

The crossover from exponential to algebraic decay
a central feature observed in the recent cosmic-string
and high-Tc [4,5] simulations using lattices larger than
963, and was also seen with more limited resolution in th
1202
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earlierXY model simulations of Epiney [14]. The result
of Antunes and Bettencourt [2] yieldg ­ 2.23 6 0.04
at Tc, which from the analysis above givesd ­ 0.41 6

0.01, in very good agreement with Shenoy’s Flory-scalin
prediction. Fits to the high-Tc simulations of Nguyen
and Sudbo [4] (in the zero-field, isotropic limit of thei
Villain model) give g ­ 2.4 [16], leading to a higher
value d ­ 0.48. However, the results of Ref. [2] show
that g increases rapidly aboveTc to the value of 2.5
found by Vachaspati and Vilenkin [17], and hence a
accurate determination requires bracketing temperatu
very close toTc. It is interesting that the resultg ­
3d 1 1 apparently remains valid even aboveTc, since
the Vachaspati-Vilenkin value ofg ­ 2.5 is based on the
“Brownian” valued ­ 0.5.

The magnitude of the loop distributionDsPd at Tc as
calculated from either Eq. (5) or (7) appears to be abo
a factor of 3 smaller than that found in the simulation
Comparing the continuum calculation to the lattice resu
is made difficult by uncertainties in matching at the sca
of the lattice spacingal; in computing the magnitude
of Eq. (7) for the comparison, the geometric valuea0 ­p

2 al was employed, but it is not entirely clear that this
the correct choice.

The total length per unit volumery of the vortex loops
can be found by multiplyingDsPd by P and integrating.
At Tc this can be found explicitly using Eq. (7),

rysTcd ­
pdB

2a2
0A0D0s3d 2 1d

. (8)

The quantityrysTcda2
l was postulated in Ref. [1] to be

universal, with a value of 0.6 in lattice units (0.2 pe
placquette, with three placquettes per unit volume). Th
means that the coefficientB in Eq. (8) characterizing
the relationship between the perimeter and the avera
loop diameter must be universal, since all of the oth
parameters are. As withDsPd above, the magnitude of
Eq. (8) must be multiplied by a factor of about 3 to matc
with the lattice results. For liquid helium, the vortex
density [18] atTc is then about1ya2

0 , 1 3 1015 cm2,
which is many orders of magnitude higher than previo
estimates [19] which did not use a renormalized theory.

A further prediction of the loop theory is the existenc
of critical behavior in the vortex density atTc [18], which
has now been seen in the cosmic-string simulations [
This is shown in Fig. 1, which plots the normalized den
sity versusTcyT , calculated by integrating Eq. (5) very
near the transition. The behavior aboveTc (dashed lines)
is only conjectured, as the theory is not valid there. T
suppress the exponential variation arising from therm
excitation of the smallest loops, the core energy const
was taken to be the relatively large valueC ­ 4y3, corre-
sponding to the Villain model. The density just belowTc

is found to decrease from its value atTc as2sTc 2 T dd.
This exponent was not measured in the cosmic-stri
simulations, probably because of the relatively low co
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FIG. 1. Normalized vortex density as a function ofTcyT , for
several different lattice sizes.

energy in that model, which would make it difficult to sep
arate the algebraic behavior from the exponential. Ho
ever, the exponent of the density in the region just abo
Tc was measured in Ref. [1] to be0.39 6 0.01, which is
quite consistent with the value ofd ­ 0.41 determined
above from the same type of simulation. It is well know
from scaling and renormalization-group studies that ma
critical exponents are identical above and below the tra
sition, and it is likely that this exponent constitutes a fu
ther measurement ofd. Sinced is less than 1,Tc marks
an inflection point in the density, where the curvatu
changes sign.

Also shown in Fig. 1 is the effect of a finite-size lattic
on the density nearTc. For this the recursion relations are
stopped at a finite scale that is a fractionb ­ 0.75 smaller
than the lattice size, whereb was found in Ref. [8]
by comparing it to the helium simulations of Ref. [15]
The effect of finite size is to smear out the critica
behavior, and this explains why it was not apparent in t
early simulations [20], which only used a maximum103

lattice size.
The coherence length in the loop theory can be iden

fied with the diameter of the largest loop that is thermal
excited [6]. Since this is divergent atTc, in a system of
finite (but macroscopic) size, the transition can be iden
fied with the point where a loop just touches two opposin
boundaries of the system. This is the percolation thres
old for the establishment of the infinite vortex cluster, a
first proposed by Onsager 50 years ago, and verified
simulations [21]. At higher temperature even larger loo
can be excited; these can take the form of a single vor
line passing from one side of the system to the other, w
the topological return path of the loop being around th
outside of the system. These are known as “string” ex
tations in cosmology [1,2,17]. The leftover strings from
the rapid cooling through the phase transitions in the ea
universe are thought to be the source of matter [19,2
-
w-
ve

n
ny
n-
r-

re

e

.
l

he

ti-
ly

ti-
g
h-
s
in

ps
tex
ith
e

ci-

rly
2].

A laboratory example of this may be the observation of
few remnant vortex lines [23] in a finite-sized sample
liquid 4He which has not been rotated or stirred, but sim
ply cooled through thel transition.

The key role of thermally excited vorticity in the
present model of the phase transition allows a rather d
ferent viewpoint of the Kibble-Zurek mechanism [19,22
for defect formation in rapidly quenched transitions as d
cussed above. This is of interest because of the po
bility of carrying out such experiments in liquid helium
[19,22,24,25]. In this view, the vortices “created” in
quench of superfluid4He throughTc are simply a per-
turbation on the equilibrium vortex density. This pertu
bation is a consequence of the dynamics of large loo
which become slow in their response to external field
and which are actually the source of the critical slowin
down of the equilibrium transition [9]. In a rapid quenc
the large loops in the vicinity ofTc cannot keep up and
fall out of equilibrium, forming an excess density that su
vives to lower temperatures, finally decaying to the equ
librium line density only after the quench is stopped.
may be possible to model this process analytically usi
the Fokker-Planck equation for the loop distribution fun
tion formulated in the dynamic theory of Ref. [9], with th
temperature being a ramp function in time. It should b
noted that the exponentd from above plays an importan
role in the vortex dynamics, since the frictional drag forc
on a loop is proportional to its total perimeter. It wa
found in Ref. [9] that the dynamic exponent characteri
ing critical slowing down is given byx ­ zn, wherez ­
s1 2 ddyd. For the “Flory” valued ­ 2ysd 1 2d this
gives the scaling resultz ­ dy2 ­ 3y2; for d ­ 0.41 as
found above,z ­ 1.44, a few percent smaller. The pos
sibility of deviations from the scaling result has been su
gested previously in perturbative dynamic theories [26]

Vortex creation has been observed in superfluid3He
[25], where the quench is induced by absorbed neutro
depositing their energy in a small region of the liquid
which heats it aboveTc, and which is then rapidly cooled
back down by the surrounding cold liquid [25]. Althoug
3He is ap-wave BCS superfluid, vortex loops will still be
associated with the phase transition as above, but du
the Ginzburg criterion [27] they will only be appreciabl
in a very narrow temperature range nearTc, since the zero-
temperature coherence length of3He is of order500 Å,
compared witha0 ­ 2.5 Å in 4He. The theory [25] of
the quenched3He involves the exponentsd andg at Tc;
the use of the Brownian values [17]g ­ 2.5 andd ­ 0.5
needs to be reexamined in light of the present results.

The vortex-loop model also allows insights into th
high-Tc superconducting transition in zero field. IfTc is
the point where the loops of infinite size act to bring a
supercurrents to a halt, then it isnot to be identified as
the point where thermal deexcitation of Cooper pairs
complete. The continued existence of pairs aboveTc has
been suggested in experiments, commonly known as
1203
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pseudogap phenomenon [28]. The vortex loops constitu
a concrete physical picture of the “phase fluctuation
postulated to give rise to this effect in Ref. [28]. The
Cooper pairs aboveTc will not be the same as those
below, since they will no longer be part of a macroscop
BCS-type condensate, which is destroyed by the vortice
Presumably the pairs would be more localized excitation
on the scale of the10 15 Å zero-temperature coherence
length.

The vortices also offer a simple explanation [29
of the magnetic flux noise in YBCO samples that i
observed to increase rapidly by many orders of magnitu
over a temperature range of order 5 K nearTc [30].
When the loops being thermally excited terminate o
the sample surface, they will induce dipolar curren
patterns on the surface, and this will generate magne
flux that can be sensed by a detection loop above t
surface. As Tc is approached from below both the
number and size of the loops will increase, increasin
the flux noise through the detector. This effect ca
also be observed in a low-Tc superconductor, since the
same vortex-loop transition occurs also in that cas
but with the considerable difference that the large zer
temperature coherence length (several thousand Å) cau
the temperature range where the vortices are apprecia
to be very much closer toTc. The experiments [31]
showed that indeed a very sharp flux-noise peak cou
be observed in a lead sample only within about 2 mK o
Tc, and that this was only an upper limit to the width du
to the resolution of the thermometry and the addition
broadening that would be caused by a distribution ofTc’s
across the sample.

In summary, a vortex-loop theory is able to provid
physical insight into recent models of cosmic strings an
high-Tc superconductors. The theory relates the critic
exponents measured in the simulations to the rando
walk nature of the loops, and the good agreement betwe
the predicted and measured exponents provides stro
support for the Flory-scaling ansatz of Shenoy [7].
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00653 and No. DMR 97-31523.

[1] N. Antunes, L. Bettencourt, and M. Hindmarsh, Phys. Re
Lett. 80, 908 (1998).

[2] N. Antunes and L. Bettencourt, Phys. Rev. Lett.81, 3083
(1998).
1204
te
s”

ic
s.
s,

]
s
de

n
t
tic
he

g
n

e,
o-
ses
ble

ld
f

e
al

e
d

al
m-
en
ng

e,
-

-

v.

[3] S. R. Shenoy and B. Chattopadhyay, Phys. Rev. B51,
9129 (1995); D. Dominguezet al., Phys. Rev. Lett.75,
717 (1995); M. Kiometzis, H. Kleinert, and A. Schakel
Phys. Rev. Lett.73, 1975 (1994); Z. Tesanovic, cond-mat
9801306.

[4] A. Nguyen and A. Sudbo, Phys. Rev. B57, 3123 (1998);
58, 2802 (1998).

[5] S. Ryu and D. Stroud, Phys. Rev. B57, 14 476 (1998).
[6] G. A. Williams, Phys. Rev. Lett.59, 1926 (1987).
[7] S. R. Shenoy, Phys. Rev. B40, 5056 (1989).
[8] G. A. Williams, J. Low Temp. Phys.101, 421 (1995).
[9] G. A. Williams, Phys. Rev. Lett.71, 392 (1993); J. Low

Temp. Phys.93, 1079 (1993).
[10] B. Chattopadhyay, M. Mahato, and S. R. Shenoy, Phy

Rev. B47, 15 159 (1993).
[11] D. Nelson and J. M. Kosterlitz, Phys. Rev. Lett.39, 1201

(1977).
[12] L. Goldner and G. Ahlers, Phys. Rev. B45, 13 129

(1992).
[13] N. Madras and A. Sokal, J. Stat. Phys.50, 109 (1988).
[14] J. Epiney, Diploma thesis, ETH Zurich, 1990 (unpub

lished).
[15] The quantityD0yb ­ 0.52 is the universal number which

should be compared with the value 0.49 found in th
finite-size simulations of E. Pollack and K. Runge, Phy
Rev. B46, 3535 (1992).

[16] The authors of Ref. [4] originally claimed the value of th
exponent to be 3, but they have now reported (priva
communication) that a value of 2.4 provides a bett
description of their data.

[17] T. Vachaspati and A. Vilenkin, Phys. Rev. D30, 2036
(1984).

[18] G. A. Williams, Z. Phys. B98, 341 (1995).
[19] A. Gill and T. Kibble, J. Phys. A29, 4289 (1996).
[20] G. Kohring, R. Shrock, and P. Wills, Phys. Rev. Lett.57,

1358 (1986).
[21] L. Onsager, Nuovo Cimento Suppl.6, 249 (1949);

J. Akao, Phys. Rev. E53, 6048 (1996).
[22] W. Zurek, Phys. Rep.276, 177 (1996).
[23] D. Awaschalom and K. Schwarz, Phys. Rev. Lett.52, 49

(1984).
[24] M. Dodd et al., Phys. Rev. Lett.81, 3703 (1998).
[25] G. Volovik, Czech. J. Phys.46, Suppl. S6, 3048 (1996);

V. Ruutu et al., Phys. Rev. Lett.80, 1465 (1998);
C. Bäuerleet al., Nature (London)382, 332 (1996).

[26] C. De Dominicus and L. Peliti, Phys. Rev. B18, 353
(1978).

[27] V. Ginzburg, Sov. Phys. Solid State2, 1824 (1960).
[28] V. Emery and S. Kivelson, Nature (London)374, 434

(1995).
[29] G. A. Williams, Physica (Amsterdam)194B–196B, 1415

(1994).
[30] M. Ferrariet al., J. Low Temp. Phys.94, 15 (1994).
[31] J. Clarke (private communication).


