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Vortex-Loop Phase Transitions in Liquid Helium, Cosmic Strings,
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The distribution of thermally excited vortex loops near a superfluid phase transition is calculated
from a renormalized theory. The number density of loops with a given perimeter is found to change
from an exponential decay with increasing perimeter to an algebraic dec@y @sapproached, in
agreement with recent simulations of both cosmic strings and Rigbdperconductors. Predictions
of the value of the exponent of the algebraic decay atnd of the critical behavior in the vortex
density are confirmed by the simulations, giving strong support to the vortex-folding model proposed
by Shenoy. [S0031-9007(99)08401-X]

PACS numbers: 64.60.Cn, 11.27.+d, 67.40.Vs, 74.20.—z

The role of thermally excited vortex loops in three- by
dimensional phase transitions, where a U(1) symmetry is a a da
broken, has recently become a prime topic in cosmologyU(a)/kgT = 772] K{In(—) + 1} — + 72K, C,
[1,2] and high?. superconductivity [3—5]. These transi- 4o de o )
tions are in the same universality class as the superiluid
transition in*He. In the helium case our original renor- whereC is a nonuniversal constant characterizing the core
malization theory based on vortex loops [6,7] has beenergy. For heliumC anday are determined from two
extended to calculations of the specific heat [8] and to thexperimental inputs]. = 2.172 K and the amplitude of
dynamics of the transition [9]. In this theory the Landau-the superfluid density [8], yielding® = 1.03 and ay =
Ginzburg-Wilson Hamiltonian is rewritten to cast it in 2.5 A. The effective core size, in Eq. (2) was suggested
terms of its elementary excitations, spin waves and vorteRy Shenoy and co-workers [7,10] to be a result of the ran-
loops, providing an alternative method for carrying outdom walk of the loop giving rise to radial fluctuations of
the renormalization process, compared to the more traderdera. about the average diameter. This folding of the
tional perturbation theories which expand the Hamiltoniarloop occurs because antiparallel vortex segments lower
expressed in terms of the order parameter. the energy. A simple polymer-type calculation [10] us-
Here we further employ the loop theory to gain insighting energy-entropy arguments yields/a = (K,a/ao)?,
into recent simulations of the high- transition [4,5] and Wwhere # = d/(d + 2) = 0.6 in d = 3 dimensions has
of cosmic-string phase transitions in the early universgéhe same form as the well-known Flory exponent of the
[1,2]. The probability of occurrence of a vortex loop with self-avoiding walk.
perimeterP is calculated and, in agreement with the simu- Equations (1) and (2) then constitute a coupled set of
lations, we find a crossover from quasiexponential decajntegral equations for the renormalized superfluid density,
of the probability with the perimeter at low temperaturesand can be solved recursively starting from the bare scale
to purely algebraic decay precisely Bt. This provides ao and iterating to distances greater than the correlation
strong support for the phenomenological “Flory-scaling”lengthé = ao/K,. In practice these are converted to a set
treatment of the random-walking loops developed byof coupled differential equations similar to the Kosterlitz
Shenoy and co-workers [10]. recursion relations [11] for the two-dimensional case, and
In the vortex-loop theory the superfluid densipy  are solved using a Runge-Kutta technique [9]. Ass
is reduced by thermally excited loops whose averagécreasedK, decreased) the solution far, falls to zero
diameter a increases as the temperature is increaseds (T. — T)”, with » = 0.6717 for 6 = 0.6. This can
and the density is finally driven to zero @t by loops be better matched to the most precise experimental value
of infinite size [6]. Defining a dimensionless superfluid[12] » = 0.6705 by adjusting to# = 0.594, which is
density byK, = hi%psao/m*ksT, where m is the mass of reasonable since it is known that the Flory-type arguments
the *He atom andg, is the smallest ring diameter, the are not exact in three dimensions [13].

equation for the renormalized density is given by [8] The arguments of Ref. [10] a!so yield a result for the
1 1 ar,\6 Ula)\ da average perimeter of a loop of diameter
— = — + Ay —]exp——=)—. Q) P a\1/6
Kr KO ap \aAQ kBT ao I B<—> , (3)

ao ao

Here Ay = 473/3, K, is the “bare” superfluid density
resulting from the spin waves (and is the initial value ofwhere B is a constant and the exponént 2/(d + 2) =
K.), andU(a) is the renormalized energy of a ring, given 0.4. This form for the perimeter was at least partially
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verified in the computer simulations of Ref. [10], and earlierXY model simulations of Epiney [14]. The results
in the XY model simulations of Epiney [14]. FaP/ay  of Antunes and Bettencourt [2] yielgq = 2.23 *= 0.04
greater than about 20 the Epiney data for the average loogt 7., which from the analysis above givés= 0.41 *=
size versus average perimeter can be fit by Eq. (3) witld.01, in very good agreement with Shenoy’s Flory-scaling
B = 1.8, although the resolution is poor because of scatteprediction. Fits to the higl:. simulations of Nguyen
in the data resulting from the relatively small lattidges®)  and Sudbo [4] (in the zero-field, isotropic limit of their
that was simulated. Villain model) give y = 2.4 [16], leading to a higher
The distribution of the density of loops with a given value 6 = 0.48. However, the results of Ref. [2] show
perimeter P can be obtained from the theory outlined that v increases rapidly abov&,. to the value of 2.5
above, which is of interest because these distributionfound by Vachaspati and Vilenkin [17], and hence an
have now been measured in the cosmic string [2] anéccurate determination requires bracketing temperatures
high-T. [4,5] simulations. The probability per unit vol- very close toT,.. It is interesting that the resuly =
ume for finding a loop of mean diameter betweeand 36 + 1 apparently remains valid even abo¥g, since

a + dais the Vachaspati-Vilenkin value of = 2.5 is based on the
l (£>2 F(_ U(a)) d_a (4) “BI‘Or:NI’lian" V_alue5 f: gsl o -
2ai \ao ksT ) ag The magnitude of the loop distributiaR(P) at T.. as

calculated from either Eq. (5) or (7) appears to be about
Equating this to the probabilit]) (P)dP /a, of finding the  a factor of 3 smaller than that found in the simulations.
corresponding loop of perimeter betweBrandP + dP  Comparing the continuum calculation to the lattice results
gives the probability distribution is made difficult by uncertainties in matching at the scale
a8/ a\351/8 Ula) of the lattice spacingz;; in computing the magnitude
— —( ) e [(——) (5) of Eq. (7) for the comparison, the geometric valye=
2ap B ksT V2 a; was employed, but it is not entirely clear that this is
For temperatures well belowl., U(a) ~ alna, and the correct choice.
henceD(P) decreases exponentially with®. NearT., The total length per unit volumge, of the vortex loops
however, the behavior is quite different. By differenti- can be found by multiplying>(P) by P and integrating.
ating Eq. (1) with respect ta and substituting for the At T, this can be found explicitly using Eq. (7),

D(P) = a_()

exponential term in Eq. (5) we get 8B
- o(Te) = . 8
pipy = T8 (&) A Pl = 2aiaaDa36 — 1 ®
3 .
2ay B \ao da The quantityp, (T.)a; was postulated in Ref. [1] to be

Precisely atT,., K, from Eq. (1) satisfies the condition universal, with a value of 0.6 in lattice units (0.2 per
K,a/ay = Dy = 0.39, at least for values of: greater placquette, with three placquettes per unit volume). This
than about5ag, and whereD, is a universal constant means that the coefficiem® in Eq. (8) characterizing
[8,15]. This condition is the three-dimensional equivalentthe relationship between the perimeter and the average
of the univeral “jump” of the superfluid density in two loop diameter must be universal, since all of the other
dimensions [11]. Inserting this result into Eq. (6) andparameters are. As witlP(P) above, the magnitude of
employing Eq. (3) yields the prediction that&tthe loop  Eq. (8) must be multiplied by a factor of about 3 to match
distribution will cross over from exponential to algebraic with the lattice results. For liquid helium, the vortex

decay withP, density [18] at7, is then aboutl/aj ~ 1 X 10'5 cn?,
T6B3® [P\ which is many orders of magnitude higher than previous
D(P) = —5—— (—) (7)  estimates [19] which did not use a renormalized theory.
2apAoDg \ao

A further prediction of the loop theory is the existence
where the exponeny = 36 + 1. For the “Flory” value of critical behavior in the vortex density @t [18], which
6 = 0.4 this would predicty = 2.2. This form forD(P)  has now been seen in the cosmic-string simulations [1].
signals the onset of loops of infinite size, since they norhis is shown in Fig. 1, which plots the normalized den-
longer have a vanishing probability. It should be notedsity versusT,/T, calculated by integrating Eq. (5) very
that the algebraic decay is a consequence of the stromgear the transition. The behavior abdie(dashed lines)
renormalization af., where the screening of large loops is only conjectured, as the theory is not valid there. To
by smaller ones causes the variationfa) to change suppress the exponential variation arising from thermal
[9] from ~alna to Ina at T,, causing the change from excitation of the smallest loops, the core energy constant
Eq. (5) to Eq. (7). was taken to be the relatively large valde= 4/3, corre-
The crossover from exponential to algebraic decay isponding to the Villain model. The density just bel@Gw
a central feature observed in the recent cosmic-string [2 found to decrease from its value &t as — (7. — T)°.
and high7, [4,5] simulations using lattices larger than This exponent was not measured in the cosmic-string
96°, and was also seen with more limited resolution in thesimulations, probably because of the relatively low core
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TV I T T A laboratory example of this may be the observation of a
10k Tty - few remnant vortex lines [23] in a finite-sized sample of
*s +— infinite liquid “He which has not been rotated or stirred, but sim-

RS . 3

ply cooled through the transition.

96
:U 08 \‘. The key role of thermally excited vorticity in the
‘g_> present model of the phase transition allows a rather dif-
~ ferent viewpoint of the Kibble-Zurek mechanism [19,22]
C 06 3¢ for defect formation in rapidly quenched transitions as dis-
‘c:> cussed above. This is of interest because of the possi-
o4l e, bility of carrying out such experiments in liquid helium
Tee [19,22,24,25]. In this view, the vortices “created” in a
8§ /\ quench of superfluidHe through7, are simply a per-
0.2 L | 1 1 turbation on the equilibrium vortex density. This pertur-

0.98 1.00 1.02 1.04 1.0 1.08 bation is a consequence of the dynamics of large loops,
T/ T which become slow in their response to external fields,
FIG. 1. Normalized vortex density as a function®f/T, for ~ @nd which are actually the source of the critical slowing
several different lattice sizes. down of the equilibrium transition [9]. In a rapid quench
the large loops in the vicinity of. cannot keep up and
fall out of equilibrium, forming an excess density that sur-
energy in that model, which would make it difficult to sep- vives to lower temperatures, finally decaying to the equi-
arate the algebraic behavior from the exponential. Howlibrium line density only after the quench is stopped. It
ever, the exponent of the density in the region just abovenay be possible to model this process analytically using
T. was measured in Ref. [1] to B39 * 0.01, which is  the Fokker-Planck equation for the loop distribution func-
quite consistent with the value & = 0.41 determined tion formulated in the dynamic theory of Ref. [9], with the
above from the same type of simulation. It is well knowntemperature being a ramp function in time. It should be
from scaling and renormalization-group studies that manyoted that the exponet from above plays an important
critical exponents are identical above and below the tranrole in the vortex dynamics, since the frictional drag force
sition, and it is likely that this exponent constitutes a fur-on a loop is proportional to its total perimeter. It was
ther measurement @&f. Sinceé is less than 17, marks  found in Ref. [9] that the dynamic exponent characteriz-
an inflection point in the density, where the curvatureing critical slowing down is given by = zv, wherez =
changes sign. (1 — 8)/8. For the “Flory” valued = 2/(d + 2) this
Also shown in Fig. 1 is the effect of a finite-size lattice gives the scaling result = d/2 = 3/2; for 6 = 0.41 as
on the density nedf,.. For this the recursion relations are found abovez = 1.44, a few percent smaller. The pos-
stopped at a finite scale that is a fractigrn= 0.75 smaller  sibility of deviations from the scaling result has been sug-
than the lattice size, wher@ was found in Ref. [8] gested previously in perturbative dynamic theories [26].
by comparing it to the helium simulations of Ref. [15]. Vortex creation has been observed in superfflite
The effect of finite size is to smear out the critical [25], where the quench is induced by absorbed neutrons
behavior, and this explains why it was not apparent in thelepositing their energy in a small region of the liquid,
early simulations [20], which only used a maximur®  which heats it abové&., and which is then rapidly cooled
lattice size. back down by the surrounding cold liquid [25]. Although
The coherence length in the loop theory can be identi¢He is ap-wave BCS superfluid, vortex loops will still be
fied with the diameter of the largest loop that is thermallyassociated with the phase transition as above, but due to
excited [6]. Since this is divergent &, in a system of the Ginzburg criterion [27] they will only be appreciable
finite (but macroscopic) size, the transition can be identiin a very narrow temperature range n&aysince the zero-
fied with the point where a loop just touches two opposingemperature coherence length e is of orders500 A,
boundaries of the system. This is the percolation thresheompared withay = 2.5 A in “He. The theory [25] of
old for the establishment of the infinite vortex cluster, asthe quenchedHe involves the exponen® andy at T,;
first proposed by Onsager 50 years ago, and verified ithe use of the Brownian values [17]= 2.5 andé = 0.5
simulations [21]. At higher temperature even larger loopseeds to be reexamined in light of the present results.
can be excited; these can take the form of a single vortex The vortex-loop model also allows insights into the
line passing from one side of the system to the other, witthigh-T. superconducting transition in zero field. 7f is
the topological return path of the loop being around thethe point where the loops of infinite size act to bring all
outside of the system. These are known as “string” excisupercurrents to a halt, then it mot to be identified as
tations in cosmology [1,2,17]. The leftover strings fromthe point where thermal deexcitation of Cooper pairs is
the rapid cooling through the phase transitions in the earlgomplete. The continued existence of pairs abByvéas
universe are thought to be the source of matter [19,22]been suggested in experiments, commonly known as the
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